Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A pathway linking translation stress to checkpoint kinase 2 signaling in Neurospora crassa.

Identifieur interne : 000399 ( Main/Exploration ); précédent : 000398; suivant : 000400

A pathway linking translation stress to checkpoint kinase 2 signaling in Neurospora crassa.

Auteurs : Axel C R. Diernfellner [Allemagne] ; Linda Lauinger [Allemagne] ; Anton Shostak [Allemagne] ; Michael Brunner [Allemagne]

Source :

RBID : pubmed:31413202

Descripteurs français

English descriptors

Abstract

Checkpoint kinase 2 (CHK-2) is a key component of the DNA damage response (DDR). CHK-2 is activated by the PIP3-kinase-like kinases (PI3KKs) ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related protein (ATR), and in metazoan also by DNA-dependent protein kinase catalytic subunit (DNA-PKcs). These DNA damage-dependent activation pathways are conserved and additional activation pathways of CHK-2 are not known. Here we show that PERIOD-4 (PRD-4), the CHK-2 ortholog of Neurospora crassa, is part of a signaling pathway that is activated when protein translation is compromised. Translation stress induces phosphorylation of PRD-4 by a PI3KK distinct from ATM and ATR. Our data indicate that the activating PI3KK is mechanistic target of rapamycin (mTOR). We provide evidence that translation stress is sensed by unbalancing the expression levels of an unstable protein phosphatase that antagonizes phosphorylation of PRD-4 by mTOR complex 1 (TORC1). Hence, Neurospora mTOR and PRD-4 appear to coordinate metabolic state and cell cycle progression.

DOI: 10.1073/pnas.1815396116
PubMed: 31413202
PubMed Central: PMC6717302


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A pathway linking translation stress to checkpoint kinase 2 signaling in
<i>Neurospora crassa</i>
.</title>
<author>
<name sortKey="Diernfellner, Axel C R" sort="Diernfellner, Axel C R" uniqKey="Diernfellner A" first="Axel C R" last="Diernfellner">Axel C R. Diernfellner</name>
<affiliation wicri:level="3">
<nlm:affiliation>Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany axel.diernfellner@bzh.uni-heidelberg.de michael.brunner@bzh.uni-heidelberg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Biochemistry Center, Heidelberg University, D-69120 Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lauinger, Linda" sort="Lauinger, Linda" uniqKey="Lauinger L" first="Linda" last="Lauinger">Linda Lauinger</name>
<affiliation wicri:level="3">
<nlm:affiliation>Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Biochemistry Center, Heidelberg University, D-69120 Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shostak, Anton" sort="Shostak, Anton" uniqKey="Shostak A" first="Anton" last="Shostak">Anton Shostak</name>
<affiliation wicri:level="3">
<nlm:affiliation>Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Biochemistry Center, Heidelberg University, D-69120 Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brunner, Michael" sort="Brunner, Michael" uniqKey="Brunner M" first="Michael" last="Brunner">Michael Brunner</name>
<affiliation wicri:level="3">
<nlm:affiliation>Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany axel.diernfellner@bzh.uni-heidelberg.de michael.brunner@bzh.uni-heidelberg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Biochemistry Center, Heidelberg University, D-69120 Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31413202</idno>
<idno type="pmid">31413202</idno>
<idno type="doi">10.1073/pnas.1815396116</idno>
<idno type="pmc">PMC6717302</idno>
<idno type="wicri:Area/Main/Corpus">000209</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000209</idno>
<idno type="wicri:Area/Main/Curation">000209</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000209</idno>
<idno type="wicri:Area/Main/Exploration">000209</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A pathway linking translation stress to checkpoint kinase 2 signaling in
<i>Neurospora crassa</i>
.</title>
<author>
<name sortKey="Diernfellner, Axel C R" sort="Diernfellner, Axel C R" uniqKey="Diernfellner A" first="Axel C R" last="Diernfellner">Axel C R. Diernfellner</name>
<affiliation wicri:level="3">
<nlm:affiliation>Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany axel.diernfellner@bzh.uni-heidelberg.de michael.brunner@bzh.uni-heidelberg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Biochemistry Center, Heidelberg University, D-69120 Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lauinger, Linda" sort="Lauinger, Linda" uniqKey="Lauinger L" first="Linda" last="Lauinger">Linda Lauinger</name>
<affiliation wicri:level="3">
<nlm:affiliation>Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Biochemistry Center, Heidelberg University, D-69120 Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shostak, Anton" sort="Shostak, Anton" uniqKey="Shostak A" first="Anton" last="Shostak">Anton Shostak</name>
<affiliation wicri:level="3">
<nlm:affiliation>Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Biochemistry Center, Heidelberg University, D-69120 Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brunner, Michael" sort="Brunner, Michael" uniqKey="Brunner M" first="Michael" last="Brunner">Michael Brunner</name>
<affiliation wicri:level="3">
<nlm:affiliation>Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany axel.diernfellner@bzh.uni-heidelberg.de michael.brunner@bzh.uni-heidelberg.de.</nlm:affiliation>
<country wicri:rule="url">Allemagne</country>
<wicri:regionArea>Biochemistry Center, Heidelberg University, D-69120 Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Checkpoint Kinase 2 (genetics)</term>
<term>Checkpoint Kinase 2 (metabolism)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Neurospora crassa (enzymology)</term>
<term>Neurospora crassa (genetics)</term>
<term>Protein Biosynthesis (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
<term>TOR Serine-Threonine Kinases (genetics)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biosynthèse des protéines (MeSH)</term>
<term>Checkpoint kinase 2 (génétique)</term>
<term>Checkpoint kinase 2 (métabolisme)</term>
<term>Neurospora crassa (enzymologie)</term>
<term>Neurospora crassa (génétique)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Stress physiologique (MeSH)</term>
<term>Sérine-thréonine kinases TOR (génétique)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Checkpoint Kinase 2</term>
<term>Fungal Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Checkpoint Kinase 2</term>
<term>Fungal Proteins</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Neurospora crassa</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Neurospora crassa</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Neurospora crassa</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Checkpoint kinase 2</term>
<term>Neurospora crassa</term>
<term>Protéines fongiques</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Checkpoint kinase 2</term>
<term>Protéines fongiques</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Protein Biosynthesis</term>
<term>Signal Transduction</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biosynthèse des protéines</term>
<term>Stress physiologique</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Checkpoint kinase 2 (CHK-2) is a key component of the DNA damage response (DDR). CHK-2 is activated by the PIP3-kinase-like kinases (PI3KKs) ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related protein (ATR), and in metazoan also by DNA-dependent protein kinase catalytic subunit (DNA-PKcs). These DNA damage-dependent activation pathways are conserved and additional activation pathways of CHK-2 are not known. Here we show that PERIOD-4 (PRD-4), the CHK-2 ortholog of
<i>Neurospora crassa</i>
, is part of a signaling pathway that is activated when protein translation is compromised. Translation stress induces phosphorylation of PRD-4 by a PI3KK distinct from ATM and ATR. Our data indicate that the activating PI3KK is mechanistic target of rapamycin (mTOR). We provide evidence that translation stress is sensed by unbalancing the expression levels of an unstable protein phosphatase that antagonizes phosphorylation of PRD-4 by mTOR complex 1 (TORC1). Hence,
<i>Neurospora</i>
mTOR and PRD-4 appear to coordinate metabolic state and cell cycle progression.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31413202</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>116</Volume>
<Issue>35</Issue>
<PubDate>
<Year>2019</Year>
<Month>08</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>A pathway linking translation stress to checkpoint kinase 2 signaling in
<i>Neurospora crassa</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>17271-17279</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1815396116</ELocationID>
<Abstract>
<AbstractText>Checkpoint kinase 2 (CHK-2) is a key component of the DNA damage response (DDR). CHK-2 is activated by the PIP3-kinase-like kinases (PI3KKs) ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related protein (ATR), and in metazoan also by DNA-dependent protein kinase catalytic subunit (DNA-PKcs). These DNA damage-dependent activation pathways are conserved and additional activation pathways of CHK-2 are not known. Here we show that PERIOD-4 (PRD-4), the CHK-2 ortholog of
<i>Neurospora crassa</i>
, is part of a signaling pathway that is activated when protein translation is compromised. Translation stress induces phosphorylation of PRD-4 by a PI3KK distinct from ATM and ATR. Our data indicate that the activating PI3KK is mechanistic target of rapamycin (mTOR). We provide evidence that translation stress is sensed by unbalancing the expression levels of an unstable protein phosphatase that antagonizes phosphorylation of PRD-4 by mTOR complex 1 (TORC1). Hence,
<i>Neurospora</i>
mTOR and PRD-4 appear to coordinate metabolic state and cell cycle progression.</AbstractText>
<CopyrightInformation>Copyright © 2019 the Author(s). Published by PNAS.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Diernfellner</LastName>
<ForeName>Axel C R</ForeName>
<Initials>ACR</Initials>
<AffiliationInfo>
<Affiliation>Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany axel.diernfellner@bzh.uni-heidelberg.de michael.brunner@bzh.uni-heidelberg.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lauinger</LastName>
<ForeName>Linda</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shostak</LastName>
<ForeName>Anton</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brunner</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Biochemistry Center, Heidelberg University, D-69120 Heidelberg, Germany axel.diernfellner@bzh.uni-heidelberg.de michael.brunner@bzh.uni-heidelberg.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.11</RegistryNumber>
<NameOfSubstance UI="D064447">Checkpoint Kinase 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D064447" MajorTopicYN="N">Checkpoint Kinase 2</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009492" MajorTopicYN="N">Neurospora crassa</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="Y">Protein Biosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Neurospora crassa</Keyword>
<Keyword MajorTopicYN="Y">checkpoint kinase 2</Keyword>
<Keyword MajorTopicYN="Y">circadian clock</Keyword>
<Keyword MajorTopicYN="Y">mTOR</Keyword>
<Keyword MajorTopicYN="Y">translation inhibition</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31413202</ArticleId>
<ArticleId IdType="pii">1815396116</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1815396116</ArticleId>
<ArticleId IdType="pmc">PMC6717302</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cancer Res. 2000 Nov 1;60(21):5934-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11085506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Dec 17;20(24):7074-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11742984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 31;277(22):19389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11901158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 Jun 1;372(Pt 2):555-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12611592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Apr 1;17(7):859-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2004 Jan 5;3(1):33-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14697757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 25;280(12):12041-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15668230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2005 Apr;27(4):397-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15770685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 11;33(12):3799-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16009812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Jul 29;122(2):235-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16051148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jun 1;441(7093):651-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16738661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Aug 4;313(5787):644-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Sep 15;20(18):2552-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16980584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Jun 15;21(12):1494-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17575051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Feb 8;283(6):3465-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18070882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2008 Mar 10;314(5):961-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18234192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2008 Feb 26;18(4):286-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18291650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2008 Dec 1;7(12):1951-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18790091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Rhythms. 2009 Jun;24(3):193-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19465696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2009 Sep 2;8(9):1047-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19473886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 24;35(6):818-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19782031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 Oct;47(10):809-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20553930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Oct 22;285(43):33348-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20713355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2011 Mar 10;54(5):1473-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21322566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Rhythms. 1990 Summer;5(2):159-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2133125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jun 3;286(22):19237-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21487018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2011;722:179-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21590421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2011 Sep 2;43(5):713-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21884974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2011 Nov;10(11):1553-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21965514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2012;920:613-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22941631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2013 Apr 15;73(8):2574-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23436801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Dec 31;8(12):e83660</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24391804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Apr 07;5:3598</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24710172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2015 Mar 10;8(367):ra27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25759478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2017 Jul;13(7):709-714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28459440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Feb;85(4):1096-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2963337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2018 Jun 20;14(6):e1007457</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29924817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1981 Jul;241(1):R31-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6454353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jun 5;273(23):14484-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9603962</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>District de Karlsruhe</li>
</region>
<settlement>
<li>Heidelberg</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Bade-Wurtemberg">
<name sortKey="Diernfellner, Axel C R" sort="Diernfellner, Axel C R" uniqKey="Diernfellner A" first="Axel C R" last="Diernfellner">Axel C R. Diernfellner</name>
</region>
<name sortKey="Brunner, Michael" sort="Brunner, Michael" uniqKey="Brunner M" first="Michael" last="Brunner">Michael Brunner</name>
<name sortKey="Lauinger, Linda" sort="Lauinger, Linda" uniqKey="Lauinger L" first="Linda" last="Lauinger">Linda Lauinger</name>
<name sortKey="Shostak, Anton" sort="Shostak, Anton" uniqKey="Shostak A" first="Anton" last="Shostak">Anton Shostak</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000399 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000399 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31413202
   |texte=   A pathway linking translation stress to checkpoint kinase 2 signaling in Neurospora crassa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31413202" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020